

# Mathematics: analysis and approaches Higher level Paper 3

Tuesday 11 May 2021 (morning)

1 hour

## Instructions to candidates

- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Answer all the questions in the answer booklet provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the **mathematics: analysis and approaches formula booklet** is required for this paper.
- The maximum mark for this examination paper is [55 marks].



- 2 -

2221-7113

Answer **all** questions in the answer booklet provided. Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 31]

This question asks you to explore the behaviour and some key features of the function  $f_n(x) = x^n(a-x)^n$ , where  $a \in \mathbb{R}^+$  and  $n \in \mathbb{Z}^+$ .

In parts (a) and (b), **only** consider the case where a = 2.

Consider  $f_1(x) = x(2-x)$ .

(a) Sketch the graph of  $y = f_1(x)$ , stating the values of any axes intercepts and the coordinates of any local maximum or minimum points.

Consider  $f_n(x) = x^n(2-x)^n$ , where  $n \in \mathbb{Z}^+$ , n > 1.

- (b) Use your graphic display calculator to explore the graph of  $y = f_n(x)$  for
  - the odd values n = 3 and n = 5;
  - the even values n = 2 and n = 4.

Hence, copy and complete the following table.

|               | Number of local maximum points | Number of local minimum points | Number of points of inflexion with zero gradient |
|---------------|--------------------------------|--------------------------------|--------------------------------------------------|
| n=3 and $n=5$ |                                |                                |                                                  |
| n=2 and $n=4$ |                                |                                |                                                  |

Now consider  $f_n(x) = x^n(a-x)^n$  where  $a \in \mathbb{R}^+$  and  $n \in \mathbb{Z}^+$ , n > 1.

(c) Show that 
$$f'_n(x) = nx^{n-1}(a-2x)(a-x)^{n-1}$$
.

- (d) State the three solutions to the equation  $f'_n(x) = 0$ .
- (e) Show that the point  $\left(\frac{a}{2}, f_n\left(\frac{a}{2}\right)\right)$  on the graph of  $y = f_n(x)$  is always above the [3]

# (This question continues on the following page)

[6]

[5]

[2]

[3]

2221-7113

#### (Question 1 continued)

(f) Hence, or otherwise, show that 
$$f'_{n}\left(\frac{a}{4}\right) > 0$$
, for  $n \in \mathbb{Z}^{+}$ . [2]

- (g) By using the result from part (f) and considering the sign of  $f'_n(-1)$ , show that the point (0, 0) on the graph of  $y = f_n(x)$  is
  - (i) a local minimum point for even values of *n*, where n > 1 and  $a \in \mathbb{R}^+$ ; [3]
  - (ii) a point of inflexion with zero gradient for odd values of *n*, where n > 1 and  $a \in \mathbb{R}^+$ . [2]

Consider the graph of  $y = x^n(a-x)^n - k$ , where  $n \in \mathbb{Z}^+$ ,  $a \in \mathbb{R}^+$  and  $k \in \mathbb{R}$ .

(h) State the conditions on *n* and *k* such that the equation  $x^n(a-x)^n = k$  has four solutions for *x*. [5]

## **2.** [Maximum mark: 24]

This question asks you to investigate and prove a geometric property involving the roots of the equation  $z^n = 1$  where  $z \in \mathbb{C}$  for integers n, where  $n \ge 2$ .

The roots of the equation  $z^n = 1$  where  $z \in \mathbb{C}$  are 1,  $\omega$ ,  $\omega^2$ , ...,  $\omega^{n-1}$ , where  $\omega = e^{\frac{m}{n}}$ . Each root can be represented by a point  $P_0$ ,  $P_1$ ,  $P_2$ , ...,  $P_{n-1}$ , respectively, on an Argand diagram.

For example, the roots of the equation  $z^2 = 1$  where  $z \in \mathbb{C}$  are 1 and  $\omega$ . On an Argand diagram, the root 1 can be represented by a point  $P_0$  and the root  $\omega$  can be represented by a point  $P_1$ .

Consider the case where n = 3.

The roots of the equation  $z^3 = 1$  where  $z \in \mathbb{C}$  are 1,  $\omega$  and  $\omega^2$ . On the following Argand diagram, the points  $P_0$ ,  $P_1$  and  $P_2$  lie on a circle of radius 1 unit with centre O(0, 0).



(a) (i) Show that  $(\omega - 1)(\omega^2 + \omega + 1) = \omega^3 - 1$ . [2]

(ii) Hence, deduce that  $\omega^2 + \omega + 1 = 0$ . [2]

## (This question continues on the following page)

2221-7113

## (Question 2 continued)

Line segments  $[P_0P_1]$  and  $[P_0P_2]$  are added to the Argand diagram in part (a) and are shown on the following Argand diagram.



 $P_0P_1$  is the length of  $\left[P_0P_1\right]$  and  $P_0P_2$  is the length of  $\left[P_0P_2\right].$ 

(b) Show that 
$$P_0P_1 \times P_0P_2 = 3$$
. [3]

Consider the case where n = 4.

The roots of the equation  $z^4 = 1$  where  $z \in \mathbb{C}$  are 1,  $\omega$ ,  $\omega^2$  and  $\omega^3$ .

(c) By factorizing  $z^4 - 1$ , or otherwise, deduce that  $\omega^3 + \omega^2 + \omega + 1 = 0$ . [2]

(This question continues on the following page)

[4]

#### (Question 2 continued)

On the following Argand diagram, the points  $P_0$ ,  $P_1$ ,  $P_2$  and  $P_3$  lie on a circle of radius 1 unit with centre O(0, 0).  $[P_0P_1]$ ,  $[P_0P_2]$  and  $[P_0P_3]$  are line segments.



(d) Show that  $P_0P_1 \times P_0P_2 \times P_0P_3 = 4$ .

For the case where n = 5, the equation  $z^5 = 1$  where  $z \in \mathbb{C}$  has roots 1,  $\omega$ ,  $\omega^2$ ,  $\omega^3$  and  $\omega^4$ .

It can be shown that  $P_0P_1 \times P_0P_2 \times P_0P_3 \times P_0P_4 = 5$ .

Now consider the general case for integer values of n, where  $n \ge 2$ .

The roots of the equation  $z^n = 1$  where  $z \in \mathbb{C}$  are 1,  $\omega$ ,  $\omega^2$ , ...,  $\omega^{n-1}$ . On an Argand diagram, these roots can be represented by the points  $P_0$ ,  $P_1$ ,  $P_2$ , ...,  $P_{n-1}$  respectively where  $[P_0P_1]$ ,  $[P_0P_2]$ , ...,  $[P_0P_{n-1}]$  are line segments. The roots lie on a circle of radius 1 unit with centre O(0, 0).

- (e) Suggest a value for  $P_0P_1 \times P_0P_2 \times ... \times P_0P_{n-1}$ . [1]
- $P_0P_1$  can be expressed as  $|1 \omega|$ .
- (f) (i) Write down expressions for  $P_0P_2$  and  $P_0P_3$  in terms of  $\omega$ . [2]
  - (ii) Hence, write down an expression for  $P_0P_{n-1}$  in terms of *n* and  $\omega$ . [1]

Consider  $z^{n} - 1 = (z - 1)(z^{n-1} + z^{n-2} + ... + z + 1)$  where  $z \in \mathbb{C}$ .

- (g) (i) Express  $z^{n-1} + z^{n-2} + ... + z + 1$  as a product of linear factors over the set  $\mathbb{C}$ . [3]
  - (ii) Hence, using the part (g)(i) and part (f) results, or otherwise, prove your suggested result to part (e).
    [4]