Mathematics: analysis and approaches Higher level

 Paper 3

 Paper 3}

Tuesday 11 May 2021 (morning)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Answer all the questions in the answer booklet provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the mathematics: analysis and approaches formula booklet is required for this paper.
- The maximum mark for this examination paper is [55 marks].

Answer all questions in the answer booklet provided. Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 31]

This question asks you to explore the behaviour and some key features of the function $f_{n}(x)=x^{n}(a-x)^{n}$, where $a \in \mathbb{R}^{+}$and $n \in \mathbb{Z}^{+}$.

In parts (a) and (b), only consider the case where $a=2$.
Consider $f_{1}(x)=x(2-x)$.
(a) Sketch the graph of $y=f_{1}(x)$, stating the values of any axes intercepts and the coordinates of any local maximum or minimum points.

Consider $f_{n}(x)=x^{n}(2-x)^{n}$, where $n \in \mathbb{Z}^{+}, n>1$.
(b) Use your graphic display calculator to explore the graph of $y=f_{n}(x)$ for

- the odd values $n=3$ and $n=5$;
- the even values $n=2$ and $n=4$.

Hence, copy and complete the following table.

	Number of local maximum points	Number of local minimum points	Number of points of inflexion with zero gradient
$n=3$ and $n=5$			
$n=2$ and $n=4$			

Now consider $f_{n}(x)=x^{n}(a-x)^{n}$ where $a \in \mathbb{R}^{+}$and $n \in \mathbb{Z}^{+}, n>1$.
(c) Show that $f_{n}^{\prime}(x)=n x^{n-1}(a-2 x)(a-x)^{n-1}$.
(d) State the three solutions to the equation $f_{n}^{\prime}(x)=0$.
(e) Show that the point $\left(\frac{a}{2}, f_{n}\left(\frac{a}{2}\right)\right)$ on the graph of $y=f_{n}(x)$ is always above the
(This question continues on the following page)

(Question 1 continued)

(f) Hence, or otherwise, show that $f_{n}^{\prime}\left(\frac{a}{4}\right)>0$, for $n \in \mathbb{Z}^{+}$.
(g) By using the result from part (f) and considering the sign of $f_{n}^{\prime}(-1)$, show that the point $(0,0)$ on the graph of $y=f_{n}(x)$ is
(i) a local minimum point for even values of n, where $n>1$ and $a \in \mathbb{R}^{+}$;
(ii) a point of inflexion with zero gradient for odd values of n, where $n>1$ and $a \in \mathbb{R}^{+}$.

Consider the graph of $y=x^{n}(a-x)^{n}-k$, where $n \in \mathbb{Z}^{+}, a \in \mathbb{R}^{+}$and $k \in \mathbb{R}$.
(h) State the conditions on n and k such that the equation $x^{n}(a-x)^{n}=k$ has four solutions for x.
2. [Maximum mark: 24]

This question asks you to investigate and prove a geometric property involving the roots of the equation $z^{n}=1$ where $z \in \mathbb{C}$ for integers n, where $n \geq 2$.

The roots of the equation $z^{n}=1$ where $z \in \mathbb{C}$ are $1, \omega, \omega^{2}, \ldots, \omega^{n-1}$, where $\omega=\mathrm{e}^{\frac{2 \pi \mathrm{i}}{n}}$. Each root can be represented by a point $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{n-1}$, respectively, on an Argand diagram.

For example, the roots of the equation $z^{2}=1$ where $z \in \mathbb{C}$ are 1 and ω. On an Argand diagram, the root 1 can be represented by a point P_{0} and the root ω can be represented by a point P_{1}.

Consider the case where $n=3$.
The roots of the equation $z^{3}=1$ where $z \in \mathbb{C}$ are $1, \omega$ and ω^{2}. On the following Argand diagram, the points $\mathrm{P}_{0}, \mathrm{P}_{1}$ and P_{2} lie on a circle of radius 1 unit with centre $\mathrm{O}(0,0)$.

(a) (i) Show that $(\omega-1)\left(\omega^{2}+\omega+1\right)=\omega^{3}-1$.
(ii) Hence, deduce that $\omega^{2}+\omega+1=0$.
(This question continues on the following page)

(Question 2 continued)

Line segments $\left[\mathrm{P}_{0} \mathrm{P}_{1}\right]$ and $\left[\mathrm{P}_{0} \mathrm{P}_{2}\right]$ are added to the Argand diagram in part (a) and are shown on the following Argand diagram.

$\mathrm{P}_{0} \mathrm{P}_{1}$ is the length of $\left[\mathrm{P}_{0} \mathrm{P}_{1}\right]$ and $\mathrm{P}_{0} \mathrm{P}_{2}$ is the length of $\left[\mathrm{P}_{0} \mathrm{P}_{2}\right]$.
(b) Show that $\mathrm{P}_{0} \mathrm{P}_{1} \times \mathrm{P}_{0} \mathrm{P}_{2}=3$.

Consider the case where $n=4$.
The roots of the equation $z^{4}=1$ where $z \in \mathbb{C}$ are $1, \omega, \omega^{2}$ and ω^{3}.
(c) By factorizing $z^{4}-1$, or otherwise, deduce that $\omega^{3}+\omega^{2}+\omega+1=0$.

(This question continues on the following page)

(Question 2 continued)

On the following Argand diagram, the points $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3} lie on a circle of radius 1 unit with centre $\mathrm{O}(0,0) .\left[\mathrm{P}_{0} \mathrm{P}_{1}\right],\left[\mathrm{P}_{0} \mathrm{P}_{2}\right]$ and $\left[\mathrm{P}_{0} \mathrm{P}_{3}\right]$ are line segments.

(d) Show that $\mathrm{P}_{0} \mathrm{P}_{1} \times \mathrm{P}_{0} \mathrm{P}_{2} \times \mathrm{P}_{0} \mathrm{P}_{3}=4$.

For the case where $n=5$, the equation $z^{5}=1$ where $z \in \mathbb{C}$ has roots $1, \omega, \omega^{2}, \omega^{3}$ and ω^{4}.
It can be shown that $\mathrm{P}_{0} \mathrm{P}_{1} \times \mathrm{P}_{0} \mathrm{P}_{2} \times \mathrm{P}_{0} \mathrm{P}_{3} \times \mathrm{P}_{0} \mathrm{P}_{4}=5$.
Now consider the general case for integer values of n, where $n \geq 2$.
The roots of the equation $z^{n}=1$ where $z \in \mathbb{C}$ are $1, \omega, \omega^{2}, \ldots, \omega^{n-1}$. On an Argand diagram, these roots can be represented by the points $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{n-1}$ respectively where $\left[\mathrm{P}_{0} \mathrm{P}_{1}\right],\left[\mathrm{P}_{0} \mathrm{P}_{2}\right], \ldots,\left[\mathrm{P}_{0} \mathrm{P}_{n-1}\right]$ are line segments. The roots lie on a circle of radius 1 unit with centre $O(0,0)$.
(e) Suggest a value for $\mathrm{P}_{0} \mathrm{P}_{1} \times \mathrm{P}_{0} \mathrm{P}_{2} \times \ldots \times \mathrm{P}_{0} \mathrm{P}_{n-1}$.
$\mathrm{P}_{0} \mathrm{P}_{1}$ can be expressed as $|1-\omega|$.
(f) (i) Write down expressions for $\mathrm{P}_{0} \mathrm{P}_{2}$ and $\mathrm{P}_{0} \mathrm{P}_{3}$ in terms of ω.
(ii) Hence, write down an expression for $\mathrm{P}_{0} \mathrm{P}_{n-1}$ in terms of n and ω.

Consider $z^{n}-1=(z-1)\left(z^{n-1}+z^{n-2}+\ldots+z+1\right)$ where $z \in \mathbb{C}$.
(g) (i) Express $z^{n-1}+z^{n-2}+\ldots+z+1$ as a product of linear factors over the set \mathbb{C}.
(ii) Hence, using the part (g)(i) and part (f) results, or otherwise, prove your suggested result to part (e).

